Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

With the “Hybrido Mesh” engine it is possible to “bake” the core A Hybrido fluid's displacement to the final mesh and there are several parameters to control the final look. With these settings you separate the displacement from the splashes. can be seen as an additional layer on top of the main body of water. This layer adds small waves and ripples to the surface and provides extra realism. In order to use this feature with a simulation, it has to be activated manually under the Hybrido domain's “Ocean Statistical Spectrum” panel. This height information is used to displace the mesh's vertices.

If your core fluid simulation has been simulated without displacement, this parameter set can be ignored. Please bear in mind that this option is very RAM-intensive and creates very large meshes – several million polygons per frames are absolutely normalThe parameters of the "Displacement" panel support the "Interactive Meshing" feature.

 

Image RemovedImage Added

 

Auto edge length

...

This parameter is only accessible when “Auto edge length” is disabled (“No”). The value given here will be used by the HyMesh engine to define the length of the mesh's border triangles. The final number of edge triangles, on the other hand, is then calculated from this length. The value is measured in metres [m]

Use displacement

Here If you can decide whether you want to add bake the displacement information to the mesh or not. “Yes” unlocks the associated parameters.enable this option.

Height attenuation

When this option is enabled the height of the mesh's vertices will be taken into account: all vertices with a height value greater than “@ height attenuation factor” will not be displacedIf you want to consider the vertices' heights to fade the displacement please activate this option.

@ height normalization factor

A fluid's height values can cover a very broad range and therefore, the values have to be normalized. Normalization means that all values are set in relation to a constant value: the normalization factor you enter here. With 1.0, for example, all height values will range between 0 and 1.

Height attenuation = Normalized height * @ height normalization factor

@ height attenuation factor

This parameter controls the amount of thinning: a value of 0.0 does not create any attenuation, while 1.0 represents the maximum.

Speed attenuation

...

@ height min/@ height max

With these parameters it is possible to define a range: vertices, with height values smaller than “@ height min” will not be affected. If a vertex' height value is greater than “@ height max” then it receives full attenuation. Between these extremes, attenuation is applied gradually

Speed attenuation

If you want to consider the vertices' speed to fade the displacement please activate this option.

@ speed normalization factor

In most simulations, velocity values cover a very broad range of values, e.g. from 0 m/s to 23.7 m/s. These ranges are difficult to handle and therefore they are normalized. After this process, all velocities will be between 0 and 1. With this factor you can “amplify” the normalized values, because they will be multiplied with the given value. The formula is:

Speed attenuation = Normalized speed * @ speed normalization factor

@ speed attenuation factor

With this parameter the thinning effect can be controlled easily. Values smaller than 1.0 create a less attenuated geometry, settings greater than 1.0 will add more displacement.

Splash attenuation

Attenuation” can also be explained as damping – or better – thinning. “Splash attenuation” means that "@ speed min/max" values.

@speed min/@ speed max

With these parameters it is possible to define a range: vertices, with speed magnitudes smaller than “@ speed min” will not be affected. If the speed magnitude is greater than “@ speed max” then it receives full attenuation. Between these extremes, attenuation is applied gradually.

Splash attenuation

“Splash attenuation” means that in those areas of the core fluid that behave more like splashes become thinner in the mesh. These the displacement fades, and finally vanishes. These areas normally do not need any displacement at all.

@ splash attenuation factor

With this parameter you can control the amount of “thinning”. 0.0 does not create any attenuation at all, while 1.0 represents the highest value.

Vorticity attenuation

The mode of operation is very similar to “Splash attenuation”, but here areas with vorticity are affected. it is possible to make the displacement patterns vanish faster (> 1) or slower (< 1).

Vorticity attenuation

Here, vorticity can be used to fade, and finally remove the displacement. Please bear in mind that the grid domain's “Vorticity” channel has to be activated before the simulation starts, because otherwise this option does not have any effect at all. By default, the “Vorticity” channel is disabled:

 HY_Domain node > Node Params > Particle Channels > Vorticity

...

@ vorticity attenuation factor

To enhance or weaken the vorticity attenuation effect, this parameter can be used and works as a multiplier:

...

With this parameter it is possible to make the displacement patterns vanish faster (> 1) or slower (< 1).